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Abstract 
 

A proposal on mathematical structures for systems archetypes is presented. The 
mathematical structures are based on systems of differential equations and the 
concept of state variable representation. Vensim is used to construct block 
diagrams and execute simulations. Finally, benefits are discussed by using both 
representations as conventional System Dynamics models and as differential 
equation systems. 
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I. Introduction 
 
The main motivations for this work are the search and learning of generic structures that allow 
designing policies to improve problematic situations in human organizations. It is known that 
growth, decline, goal seeking, and oscillations are consequences of feedback loop dynamics 
(Forrester, 1994, 54.) System Dynamics models and differential equations are two effective 
representations to express changes of things through time. 

System Dynamics uses symbolic and graphical representations as well as computer simulation 
models to represent and understand dynamics of a situation. This latter approach is also found in 
disciplines in disciplines such as ecology, electrical engineering, chemical engineering, among 
others but these disciplines use differential equations as their representation tool (Zill, 1997), 
(Lomen and Lovelock, 1999). Thus it seems to be useful to understand how to pass from one 
representation to another.  

This work has been organized in five sections. The first section is the introduction. The second 
deals with concepts of state-variable description. The third is the introduction of the 
mathematical representation for system archetypes using the state-variable description. The 
fourth section is conclusions. The fifth section presents the references for this work. 
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II. State-Variable Representation 
 
Some reasons that make natural the use state-variable representation in System Dynamics are: 

1. The exact match between the concepts of state variable and rate of change dx
with the concepts of Stock and Flow, respectively.  
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2. It is a general representation that allows us to handle time varying and nonlinear systems.  

3. Its realization and solution can be obtained using the concept of analog-computer 
simulation.  

4. First-order differential equations of the state-space description are easily and accurately 
evaluated on a digital computer. 

The state-variable representation is the structure of a dynamic system accomplished by means of 
a set of n first-order differential equations (Rohrs, Melsa, and Schultz, 1993, 28.) The state-
variable description of a system is not unique. The system can be described by many different 
sets of state variables (Kailath, 1980, 53.) The general state-variable representation is given by: 
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where  is a  state nonlinear vector function,  is the  state vector,  represents the 
number of states considered in the system, called the order of the system, u  is an m  input 
vector, m is the number of inputs, and t  denotes time dependency. 

f 1×n x 1×n n
1×

Linear systems are considered a special class of nonlinear systems. Linear systems take the form: 
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where the n variables xi(t) are the state-variables and u(t) is the exogenous input. Additionally, 
an output expression y(t) as function of the states-variables is used to complete the 
representation: 
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The general linear state-space equations for an n-states, m-inputs, and k-outputs system has the 
form (Wiberg, 1971). 
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where  is an n-vector;  is an m-vector;  is a k-vector;  is an  matrix; B  
is an  matrix; C  is an  matrix, and D is a  matrix. 
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The state of a physical object is any property of the object, which relates input to output such that 
knowledge of the input time function for t  and state at time  completely determines a 
unique output for t  (Wiberg, 1971). A state can be seen as the answer to the question: given 
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 and the mathematical relationships of the abstract object, what additional 
information is needed to completely specify { }? 0),( ttty ≥
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The vector solution  describes the trajectories on time of the internal variables. Elements of 
 are the integrator outputs in any realization. It is clear that if the values of the integrator 

outputs are known for any given time t  and the inputs  for  also known then all 
present and future values of the outputs y , and integrator outputs (indeed, of any signal 
anywhere in the simulation) can be calculated.  
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The advantage of this state-space description is that there is no need to know the past of all the 
system to establish the present and future behavior.  provides a sufficient statistical 
information to calculate the future {  response to a new input {  without 
worrying about { . In this sense,  is a minimal sufficient statistics (Kailath, 
1980.) Therefore, it is natural to call the integrator outputs at any time  the state of the system 
realization. This interpretation is not restricted to analog-computer realizations but also applies to 
any set of state-space equations, no matter how they are obtained -as realization of differential 
equations or as description of physical systems (Kailath, 1980, 63.) 
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Now the state variable concept is applied to provide a mathematical structure for the systems 
archetypes described by (Senge, 1990) in Appendix 2: Systems Archetypes. 

 
 

III. Mathematical structures for Systems Archetypes 
 
A. Eroding Goals 
 
"A shifting the burden type of structure in which the short-term solution involves letting a long-
term, fundamental goal decline" (Senge, 1990, 383.) 
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Fig. 1 Block diagram for Eroding Goal Archetype 
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For this example, T1 = 5 and T2 = 10 are the 
corresponding time constants of the 
balanced loops. T2 >T1 to represent the 
delay included as definition in B2 by the 
original archetype in (Senge, 1990, 383.) 
x10 = 100 and x20 = 40. 
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 (01) Actions to Improve Conditions = Gap/10 
 (02) Condition= INTEG (Actions to Improve Conditions, 40) 
 (03) FINAL TIME  = 12 
 The final time for the simulation. 
 (04) Gap = Goal-Condition 
 (05) Goal= INTEG (-Pressures to Adjust Goal, 100) 
 (06) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (07) Pressures to Adjust Goal = Gap/5 
 (08) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (09) TIME STEP  = 0.125 
 The time step for the simulation. 
 
 
 



B. Escalation 
 
"Two people or organizations each see their welfare as depending on a relative advantage over 
the other. Whenever one side gets ahead, the other is more threatened, leading it to act more 
aggressively to reestablish its advantage, which threatens the first, increasing its aggressiveness, 
and so on. Often each side sees its own aggressive behavior as a defensive response to the other's 
aggression; but each side acting "in defense" results in a buildup that goes far beyond either 
side's desires" (Senge, 1990, 384.) 
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Fig.  2 Block diagram for Escalation archetype 
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Where Ra and Rb refer to the desired 
relations x1/x2 by A and B, respectively. 
Parameters a and b are the s rates of the 
description. For the example, 

'ix
12=aR , 

and 11=bR , a = 1, b=1, x10 = 40, and x20 
= 10. 
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 (01) A's Results = INTEG (Activity by A, 40) 
 (02) Activity by A = 1*((2/1)-Results of A Relative to B) 
 (03) Activity by B = 1*(Results of A Relative to B - (1/1)) 
 (04) B's Results = INTEG (Activity by B, 10) 
 (05) FINAL TIME  = 60 
 The final time for the simulation. 
 (06) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (07) Results of A Relative to B = A's Results/B's Results 
 (08) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (09) TIME STEP  = 1 
 The time step for the simulation. 
 
 
 
C. Fixes that Fail 
 
"A fix, effective in the short term, has unforeseen long-term consequences which may require 
even more use of the same fix" (Senge, 1990, 388.) 
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Fig.  3 Block diagram for Fixes that Fails archetype 
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Where d is the delay in time units, and a, b 
, c are proportionality parameters. In this 
example, a = 0.5, b = 0.5, c = 0.40, d = 5, 
x10 = 50, and x20 = 0. 
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 (01) Capacity= INTEG (Investment and Capacity, 80) 
 (02) Demand= INTEG (Net Rate of Change, 1) 
 (03) FINAL TIME  = 12 
 The final time for the simulation. 
 (04) Growing Action= 1/100*Demand 
 (05) Growth and Underinvestment = Performance Standard-Performance 
 (06) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (07) Investment and Capacity = 0.01*Growth and Underinvestment 
 (08) Net Rate of Change = 0.75*Growing Action*DELAY3(Performance, 1 ) 
 (09) Performance = Capacity-Demand 
 (10) Performance Standard = 100 
 (11) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (12) TIME STEP  = 0.125 
 The time step for the simulation. 
 
 
 
D. Growth and Underinvestment 
 
"Growth approaches a limit which can be eliminated or pushed into the future if the firm, or 
individual, invest in additional "capacity." But the investment must be aggressive and 
sufficiently rapid to forestall reduced growth, or else it will never get made. Oftentimes, key 
goals or performance standards are lowered to justify underinvestment" (Senge, 1990, 389-390.)  
 

Demand

Capacity

Performance
+

+

Net Rate of Change
Growing
Action

+

+

-

Performance
Standard

Growth and
Underinvestment

- +

Investment and
Capacity

+

R

B1

B2

X1

X2

X2'

X1'

 
Fig.  4 Block diagram for Growth and Underinvestment archetype 
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Where Ps is the performance standard, and 
a, b and, c are model parameters. For this 
example,  
Ps = 100, a=0.75, b = 100, c = 0.01, x10 = 
1, and x20 = 80. 
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 (01) Capacity = INTEG (Investment and Capacity, 80) 
 (02) Demand= INTEG (Net Rate of Change, 1) 
 (03) FINAL TIME  = 12 
 The final time for the simulation. 
 (04) Growing Action = 1/100*Demand 
 (05) Growth and Underinvestment = Performance Standard-Performance 
 (06) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (07) Investment and Capacity = 0.01*Growth and Underinvestment 
 (08) Net Rate of Change = 0.75*Growing Action*DELAY3(Performance, 1 ) 
 (09) Performance = Capacity-Demand 
 (10) Performance Standard = 100 
 (11) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (12) TIME STEP  = 0.125 
 The time step for the simulation. 
 
 
 



E. Limits to Growth - Model 1 
 
"A process feeds on itself to produce a period of accelerating growth or expansion. Then the 
growth begins to slow (often inexplicably to the participants in the system) and eventually comes 
to a halt, and may even reverse itself and begin an accelerating collapse. 
 "The growth phase is caused by a reinforcing feedback process (or by several reinforcing 
feedback processes.) The slowing arises due to a balancing process brought into play as a "limit" 
is approached. The limit can be a resource constraint, or an external or internal response to 
growth. The accelerating collapse (when it occur) arises from the reinforcing process operating 
in reverse, to generate more and more contraction" (Senge, 1990, 379.) 
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Fig.  5 Block diagram for Limits to Growth archetype 
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Where L is the limit of growth and a is the 
maximum fractional growth. For this 
example,  
L = 100, a = 0.1, and x0 = 1. 
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 (1) Condition = INTEG (Growing Action-Slowing Action, 1) 
 (2) FINAL TIME  = 100 
 The final time for the simulation. 
 (3) Growing Action = 0.1*Condition 
 (4) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (5) Limiting Condition = 100 
 (6) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (7) Slowing Action = 0.1*Condition*(1-((Limiting Condition-Condition)/Limiting 
Condition)) 
 (8) TIME STEP  = 0.125 
 The time step for the simulation. 
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Fig.  6 Block diagram for Limits to Growth archetype - model 2 
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Where L is the limit of growth and a is the 
maximum fractional growth. For this 
example,  
L = 100, a = 0.1, x10 = L-1, and x20 = 1. 
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 (1) FINAL TIME  = 100 
 The final time for the simulation. 
 (2) Growing Level = INTEG ( Rate of Change, 1) 
 (3) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (4) Limit = 100 
 (5) Rate of Change = (0.1/Limit)*Growing Level*Slowing Level 
 (6) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (7) Slowing Level = INTEG (-Rate of Change, 100-1) 
 (8) TIME STEP  = 0.125 
 The time step for the simulation. 
 
 
 
Limits to Growth - Model 3 
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Fig.  7 Block diagram for Limits to Growth archetype - model 3 
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Where L is the limit of growth and a is the 
maximum fractional growth. For this 
example,  
L = 100, a = 0.1, and x0 = 1. 
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 (1) Condition = INTEG (Net Rate of Change, 1) 
 (2) FINAL TIME  = 100 
 The final time for the simulation. 
 (3) Gap Fraction = (Limiting Condition-Condition)/Limiting Condition 
 (4) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (5) Limiting Condition = 100 
 (6) Net Rate of Change = 0.1*Condition*Gap Fraction 
 (7) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (8) TIME STEP  = 0.125 
 The time step for the simulation. 
 
 
 
F. Shifting the Burden 
 
"A short term "solution" is used to correct a problem, with seemingly positive immediate results. 
As this correction is used more and more, more fundamental long-term corrective measures are 
used less and less. Over time, the capabilities for the fundamental solution may atrophy or 
become disabled, leading to even greater reliance on the symptomatic solution" (Senge, 1990, 
381.) 
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Fig.  8 Block diagram for Shifting The Burden archetype 
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For this example, a = 0.10, b = 0.05, c = 
1.0, d=0.01, x10 = 20, and x20 = 0. 
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 (01) FINAL TIME  = 20 
 The final time for the simulation. 
 (02) Fundamental Solution = (0.05-1*Side Effect)*Problem Symptom 
 (03) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (04) Problem Symptom = INTEG (-Fundamental Solution-"Symptomatic 
\"Solution\"", 20) 
 (05) Rate of Change = 0.01*"Symptomatic \"Solution\"" 
 (06) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (07) Side Effect = INTEG (Rate of Change, 0) 
 (08) "Symptomatic \"Solution\"" = 0.1*Problem Symptom 
 (09) TIME STEP  = 0.125 
 The time step for the simulation. 
 
 
 



G. Success to the Successful 
 
"Two activities compete for limited support or resources. The more successful one becomes, the 
more support it gains, thereby starving the other" (Senge, 1990, 385.) 
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Fig.  9 Block diagram for Success To The Successful archetype 
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For this example, a = 0.1, b = 0.1, x10 = 
5.5, and 
x20 = 4.5. 
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 (01) Allocation to A instead of B = Success of A-Success of B 
 (02) FINAL TIME  = 12 
 The final time for the simulation. 
 (03) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (04) Resouces to B = -0.1*Allocation to A instead of B 
 (05) Resources to A =  0.1*Allocation to A instead of B 
 (06) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (07) Success of A = INTEG (Resources to A, 5.5) 
 (08) Success of B = INTEG (Resouces to B, 4.5) 
 (09) TIME STEP  = 0.125 
 The time step for the simulation. 
 



 
 
H. Tragedy of the Commons 
 
"Individuals use a commonly available but limited resource solely on the basis of individual 
need. At first they are rewarded for using it; eventually, they get diminishing returns, which 
causes them to intensify their efforts. Eventually, the resource is either significantly depleted, 
eroded, or entirely used up" (Senge, 1990, 387.) 
 

Net Gains for
A

Net Gains for
B

Individual A's
Activity

Individual B's
Activity

+

Gain per
Individual
Activity

Total Activity

Gain Rate for A

Gain Rate for B

+

+

+

+

+

R1

R2

B1

B2
+

Resource
Limit

+

X1

X2
X2'

X1'

X3
X3'

 
Fig.  10 Block diagram for Tragedy of the Commons archetype 
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For this example, a = 1000*12, b = 0.4, c 
= 1000*12, d = 0.4, e = 5,  x10 = 20, x20 = 
15, and x30 = 100. 
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 (01) FINAL TIME  = 12 
 The final time for the simulation. 
 (02) Gain per Individual Activity = INTEG (-Total Activity, Resource Limit) 
 (03) Gain Rate for A = Gain per Individual Activity/1000*12-0.4 
 (04) Gain Rate for B = Gain per Individual Activity/1000*12-0.4 
 (05) Individual A's Activity = Gain Rate for A*Net Gains for A 
 (06) Individual B's Activity = Net Gains for B*Gain Rate for B 
 (07) INITIAL TIME  = 0 
 The initial time for the simulation. 
 (08) Net Gains for A = INTEG (Individual A's Activity, 20) 
 (09) Net Gains for B= INTEG ( Individual B's Activity, 15) 
 (10) Resource Limit = 100 
 (11) SAVEPER  = TIME STEP 
 The frequency with which output is stored. 
 (12) TIME STEP  = 0.0078125 
 The time step for the simulation. 
(13) Total Activity = IF THEN ELSE( Gain per Individual Activity>0, 
               DELAY3(Individual A's Activity  +Individual B's Activity, 5 ) , 0 ) 
 
 
 

IV. Conclusions 
 
Proposed mathematical structures for systemic archetypes has been presented. The mathematical 
structures are based on systems of differential equations and the concept of state variable 
representation. 

Formal models of dynamic systems represented by differential equations have proved to be 
effective elements to transmit knowledge, ideas, and experiences among different disciplines of 
science. 

System Dynamics as a modeling method that enhances learning of complex systems by using 
feedback principles and computer simulation models have the great potential to become a 
conventional provider of formal models for the social sciences. The following and natural step 
seems to be to represent mathematically System Dynamics models.  

Then a wider channel of communication may be established among other disciplines by sharing 
System Dynamics models in the form of differential equations, and taking advantages in the 
same way of those models developed and considered as deep knowledge by other areas.  

So the goals of System Dynamics would not change at all. As it is known, learning and policy 
designs is what SD is about. However, the scope of the implementation stage would widen with 
the availability of a second representation of the results of the modeling process.  The benefits of 
having this second standard communication mechanism might be substantial. 
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